<<Самоделкин.komi.ru>> :: Улучшенный ШИ регулятор на TL494

 

-

Главная

-

История

-

Галерея

-

Электроника

-

Автомобилестроение

-

Тракторостроение

-

Дельтапланеризм

-

Хот - Род

-

Рестайлинг

-

Спортивный автомобиль - БАГГИ

-

Форум

-

Доска объявлений

-

Личная страничка автора

-

Архивы (скачать файлы)

 

 

E-Mail: girosil@mail.ru

 

 

 

 

Вернуться в раздел электроники

 

 

Улучшенный ШИМ контроллер на TL494

Автор статьи: Токмаков Н.М., Сыктывкар, 2011г.


      Статья продолжает тему создания устройств управления мощными электродвигателями. В данном случае рассматривается устройство для управления электродвигателем с напряжением питания 24 вольта и мощностью до 2-х киловатт. Но регулятор можно применить и для других напряжений и мощностей, для этого его требуется дополнить устройством понижения напряжения питания электронной части, а транзисторы заменить на другие подходящие по мощности и допустимым напряжениям и токам. Выходной каскад устройства способен управлять десятком указанных на схеме транзисторов.

      Ранее на сайте уже размещена схема ШИМ регулятора оборотов коллекторного электродвигателя на микросхеме TL494, но как оказалось она имеет недостаток связанный с неполным диапазоном регулирования мощности. Терялось около 4-5% мощности двигателя. Упоминаемую статью можно посмотреть ЗДЕСЬ . Новая схема несколько доработана.


      Принципиальная схема регулятора:




      Верхнее положение задатчика оборотов соответствует отсутствию управляющих импульсов. Нижнее положение - максимальной мощности. Резисторами R3 и R1 можно изменить сектор работы рабочего органа потенциометра.

     Схема разрабатывалась и испытывалась на электротрайке с напряжением тяговой батареи 24 вольта. Поэтому некоторые элементы расчитаны на питание от 24 вольт, в частности узел питания на интегральном стабилизаторе DA1. При использовании более высокого напряжения необходимо позаботиться о понижении питания до разумной величины (30-18 вольт) или запитать от отдельной батареи аккумуляторов. Силовые выходные транзисторы должны иметь рабочее напряжение не менее 2-х кратно большее напряжения тяговой батареи, а суммарный ток сборки транзисторов в 2-4 раза больше номинального тока нагрузки.

      В качестве главного управляющего элемента устройства используется микросхема типа TL494CN, выпускаемая фирмой TEXAS INSTRUMENT (США). Она выпускается рядом зарубежных фирм под разными наименованиями. Например, фирма SHARP (Япония) выпускает микросхему IR3M02, фирма FAIRCHILD (США) - иА494, фирма SAMSUNG (Корея) - КА7500, фирма FUJITSU (Япония) - МВ3759, есть ещё mPC494,TL493,TL495,TL594 и т.д. Все эти микросхемы являются полными аналогами отечественной микросхемы КР1114ЕУ4 (М1114ЕУ4,K1006EУ4).
      Есть ещё отечественная микросхема M1114ЕУ3, но у неё изменена разводка выводов по ножкам микросхемы.
      TL594 - аналог TL494 c улучшенной точностью усилителей ошибки и компаратора.
      TL598 - аналог TL594 c двухтактным (pnp-npn) повторителем на выходе.


      Плюсы:
Развитые цепи управления, два дифференциальный усилителя (могут выполнять и логические функции)
      Минусы:
Однофазные выходы требуют дополнительной обвески (по сравнению с UC3825). Недоступно токовое управление, относительно медленная петля обратной связи. Синхронное включение двух и более ИС не так удобно, как в UC3825.


      Не будем подробно рассматривать устройство и работу этой управляющей микросхемы. ЗДЕСЬ можно посмотреть статью c описанием работы микросхемы.


      Разводка печатной платы регулятора:




     

      На рисунке должно быть все понятно. Размер печатной платы из одностороннего фольгированного стеклотекстолита 63 х 71 мм. Обратите внимание: дорожки питания разведены таким образом, что силовая и управляющая части запитаны отдельными проводниками. Это принципиально.
      Поставлена цель иметь максимально упрощенный ШИ регулятор для ДТП, поэтому ограничимся именно таким построением схемы устройства. Это позволит подобрать необходимые детали даже в дали от крупных городов. Микросхема TL494 широко применяется в блоках питания компьютеров, поэтому её найти не составит труда. При аккуратной сборке выходные импульсы должны иметь такой вид выходного сигнала с формирователя импульсов:



      При самостоятельной разводке печатной платы транзисторы VT2 и VT3 следует ставить ближе к источнику питания, а между эмиттерами транзисторов установить керамический конденсатор в непосредственно близости к ним.
Силовой модуль, куда входят резисторы R11-R15, транзисторы VT4-VT7, диод VD2 изготавливается отдельно с тщательным соблюдением требований к силовым устройствам. А диод VD2 вообще рекомендую ставить вблизи электродвигателя или на его клеммы, снабдив небольшим радиатором с площадью пластин 30-50 кв.см.



     Обратите внимание на подвод токосьемных проводников. После запаивания транзисторов и резисторов, надо уделить особое внимание прокладке электрических проводов. Необходимо проложить медные жилы непосредственно до выводов транзисторов. И чем толще, тем лучше. Удельные сопротивления припоя и меди различаются почти в десять раз. Поэтому в силовых цепях на припой как на проводник электричества расчитывать не следует. Он создает значительное падение напряжения, что является причиной неравномерной загрузки силовых транзисторов и как следствие ведет к проблемам с качественной работой всего устройства в целом. Чтобы не быть голословным приведу удельные сопротивления: медь - 0.0175 Ом*мм2/м, припой - 0.167 Ом*мм2/м (олово-0.115, свинец-0.221)

      Управляющий сигнал к силовому блоку подвести витым проводом и в центр сборки, а еще лучше для каждого транзистора свою витую пару, но это уже как идеальный вариант.

      Демпферный диод VD3 можно установить как в силовом блоке (если есть место) так и непосредственно на электродвигатель, либо по пути прокладки силовых кабелей.



      Возможно для кого-то представит интерес следующая схема устройства регулятора. Она несколько проще, но имеется недостаток в виде не полного регулирования мощности. Это связано с тем, что ключи имеют паузу (Dead time) для предотвращения сквозных токов в работе двухтактных каскадов. Это не позволяет использовать несколько последних процентов мощности нагрузки. Фотография осциллограммы наглядно показывает этот факт.



     Устройтва не имеют собственной защиты от перегрузок и коротких замыканий, поэтому используйте амперметр для контроля тока в нагрузке.



      На базе вышеуказанной схемы разработано устройтво с защитой по току в нагрузке.



      Используя опыт изготовления ШИМ регуляторов двигателей постоянного тока для электромобилей, наш украинский коллега из п.Долина Иваново-Франковской области Александр Сорочка разработал и собрал действующий контроллер для электродвигателя. (кликнуть по рисунку для открытия в отдельном окне)



     Схема разрабатывалась с помощью программы Splan v5.0, печатная плата программой SprintLayOut v4.0. Их легко найти на просторах Интернета. Программы также можно скачать здесь на сайте в разделе "Архивы". Они легко и быстро осваиваются в работе даже начинающими.

     Для удобства работы с документацией предлагается возможность скачать исходные файлы СХЕМЫ и ЧЕРТЕЖА платы. Не лишне сообщить, что чертеж последней печатной платы возможно применить для изготовления всех устройств представленных в статье, просто некоторые соединения выполнить перемычками через имеющиеся отверстия в плате.

     Для управления драйвером (ШИМ регулятором) традиционно применяю датчик положения дроссельной заслонки типа 39.3855 от ВАЗовских автомобилей. Он устроен не совсем так как хотелось бы. Была попытка разобрать его и усовершенствовать. Разобрать удалось, но усовершенствовать не представляется возможным. Может быть кому-то удастся это сделать. Вот его конструкция (по контуру крышки залит компаунд, он легко колется резаком):



     После сборки крышечку залить селиконовым герметиком, излишки удалить до высыхания.


Вернуться в раздел электроники, к другим схемам ШИМ



 

 

-

Концепция электромобиля

-

Маркировка электромашин

-

Режим зарядки аккумуляторов

-

Сведения по аккумуляторам

-

Требования к мини тракторам

-

Требования к автомобилям

-

Требования к электромобилям

-

Обзор производителей аккумуляторов

 

 

 

   Rambler's Top100