html> <<Самоделкин>> :: Статья :: Суперконденсаторы

 

-

Главная

-

История

-

Галерея

-

Электроника

-

Автомобилестроение

-

Тракторостроение

-

Дельтапланеризм

-

Хот - Род

-

Рестайлинг

-

Спортивный автомобиль - БАГГИ

-

Форум

-

Доска объявлений

-

Личная страничка автора

-

Архивы (скачать файлы)

 

 

E-Mail: girosil@mail.ru

 

 

 

 

 

 

Суперконденсаторы на электротранспорте

Популярный термин суперконденсатор, распространившийся в последнее время, не совсем корректное название такого устройства как ионистор. Ионистор в свою очередь является разновидностью конденсатора. Ионистор изобретен довольно давно - в 50-х годах, но в таком виде как сейчас он существует с 1982 года. Первые ионисторы с малым внутренним сопротивлением для применения в мощных схемах были разработаны фирмой PRI в 1982 году. На рынке эти ионисторы появились под именем «PRI Ultracapacitor».

Для просмотра рисунков в отдельном окне щелкните по нему.

С появлением ионисторов стало возможным использовать конденсаторы в электрических цепях не только как преобразующий элемент, но и как источник напряжения. Ионистор широко применяются в качестве замены батареек для хранения информации о параметрах изделия при отсутствии внешнего питания. Такие элементы имеют несколько преимуществ над обычными химическими источниками тока — гальваническими элементами и аккумуляторами:

  • Высокие скорости заряда и разряда.
  • Простота зарядного устройства
  • Малая деградация даже после сотен тысяч циклов заряда/разряда
  • Малый вес по сравнению с электролитическими конденсаторами подобной ёмкости
  • Низкая токсичность материалов
  • Неполярность (хотя на ионисторах и указаны "+" и "-", это делается для обозначения полярности остаточного
        напряжения после его зарядки на заводе-изготовителе).



    Плотность энергии ионисторов пока еще в несколько раз меньше возможностей аккумуляторов. Например, плотность энергии ионистора BCAP3000 3000Ф x 2.7В массой 0.51 кг составляет 21.4 кДж/кг. Это в 7.6 раз меньше плотности энергии свинцовых электролитических аккумуляторов, в 25 раз меньше литий-полимерных аккумуляторов, но в десятки раз больше плотности энергии электролитического конденсатора.
    Плотность мощности ионистора зависит от внутреннего сопротивления. В последних моделях ионисторов внутреннее сопротивление достаточно мало, что позволяет получать мощность, сравнимую с аккумуляторной.
    В 1997 году исследователи из CSIRO разработали супер-конденсатор, который мог хранить большой заряд за счёт использования плёночных полимеров в качестве диэлектрика. Электроды были изготовлены из углеродных нанотрубок. У обычных конденсаторов удельная энергия составляет 0,5 Вт·ч/кг, а у конденсаторов PET она была в 4 раза больше.
    В 2008 году индийские исследователи разработали опытный образец ионистора на основе графеновых электродов, обладающий удельной энергоёмкостью до 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30—40 Вт·ч/кг). Однако недостатки ионисторов:

  • Удельная энергия меньше, чем у традиционных источников (1—3 Вт·ч/кг при 200 Вт·ч/кг
        для литий-ионных аккумуляторов).
  • Напряжение зависит от степени заряженности.
  • Возможность выгорания внутренних контактов при коротком замыкании.
  • Малый срок службы (сотни часов) на предельных напряжениях заряда
  • Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10-100 Ом
        у ионистора 1Ф x 5,5В
  • Значительно больший, по сравнению с аккумуляторами саморазряд: порядка 1 мкА у ионистора 2Ф x 2.5В

    Срок службы ионисторов велик. Проводились исследования по определению максимального числа циклов заряд-разряд. После 100 000 циклов не наблюдалось ухудшения характеристик. Согласно недавним заявлениям сотрудников MIT, ионисторы могут в скором времени заменить обычные аккумуляторы. Кроме того, в 2009 году были проведены испытания аккумулятора на основе ионистора, в котором в пористый материал были введены наночастицы железа. Полученный двойной электрический слой пропускал электроны в два раза быстрее за счет создания туннельного эффекта.
    Конденсатор с органическим или неорганическим электролитом, «обкладками» в котором служит двойной электрический слой на границе раздела электрода и электролита имеет большую ёмкость. В связи с тем, что толщина двойного электрического слоя (то есть расстояние между «обкладками» конденсатора) очень мала, запасённая ионистором энергия выше по сравнению с обычными конденсаторами того же размера. К тому же, использование двойного электрического слоя вместо обычного диэлектрика позволяет намного увеличить площадь поверхности электрода (например, путём использования пористых материалов, таких, как активированный уголь или вспененные металлы). Типичная ёмкость ионистора — несколько фарад, при номинальном напряжении 2—10 вольт.

    Двойной электрический слой (межфазный) - ДЭС

    Двойной электрический слой (ДЭС) — слой ионов, образующийся на поверхности частиц в результате адсорбции ионов из раствора, диссоциации поверхностного соединения или ориентировании полярных
    молекул на границе фаз. Ионы, непосредственно связанные с поверхностью называются потенциалопределяющими. Заряд этого слоя компенсируется зарядом второго слоя ионов, называемых противоионами.
    Двойной электрический слой возникает при контакте двух фаз, из которых хотя бы одна является жидкой. Стремление системы понизить поверхностную энергию приводит к тому, что частицы на поверхности раздела фаз ориентируются особым образом. Вследствие этого контактирующие фазы приобретают заряды противоположного знака, но равной величины, что приводит к образованию двойного электрического слоя. Можно выделить три механизма образования ДЭС:
       1.Переход ионов или электронов из одной фазы в другую (поверхностная ионизация). Примером
         может служить диссоциация поверхностных функциональных групп, принадлежащих одной
         из фаз (как правило, твердой). Для определения знака заряда поверхности используется
         правило Фаянса — Панета
       2.Преимущественная адсорбция в межфазном слое ионов одного знака.
       3.Ориентирование полярных молекул в поверхностном слое. По этому механизму ДЭС образуется
         в случае, если вещества, составляющие фазы системы не могут обмениваться зарядами.
         Для определения знака заряда поверхности используют правило Кёна, гласящее, что из
         двух соприкасающихся фаз положительно заряжается та, которая имеет большую
         диэлектрическую проницаемость.
    В отсутствии теплового движения частиц, строение двойного электрического слоя подобно строению плоского конденсатора. Но в отличие от идеального случая, ДЭС в реальных условиях имеет диффузное (размытое) строение. Согласно современной теории структуру ДЭС составляют два слоя:
  • Слой Гельмгольца или адсорбционный слой, примыкающий непосредственно к межфазной поверхности.
        Этот слой имеет толщину
        равную радиусу потенциалопределяющих ионов в несольватированном состоянии.
  • Диффузный слой или слой Гуи, в котором находятся противоионы. Диффузный слой имеет толщину
        которая зависит от свойств системы и может достигать больших значений. Электрической характеристикой ДЭС
        является потенциал
    Электрокинетический потенциал или дзета-потенциал - это потенциал соответствует плоскости скольжения и является частью потенциала диффузного слоя. Плоскость скольжения образуется в результате того, что при движении дисперсных частиц наиболее удаленная часть диффузного слоя не участвует в движении, а остается неподвижной. Поэтому появляется нескомпенсированность поверхностного заряда частицы и становятся возможными электрокинетические явления. Дзета-потенциал является одной из важнейших характеристик двойного электрического слоя.

    Самый ёмкий графеновый суперконденсатор

    Исследователи в США создали на базе графена сверхемкий суперконденсатор, способный запасать столько же энергии, сколько хранится в никель-металлогидридных батареях. Главное преимущество предложенного устройства состоит в том, что заряжаться и разряжаться оно может за считанные секунды (минуты). Созданный конденсатор обладает наиболее высокой плотностью запасенной энергии среди всех наноуглеродных устройств, работающих по принципу двойного электрического слоя.
    Конденсатор – это устройство, с помощью которого можно запасти определенный электрический заряд. Одна из разновидностей конденсаторов - суперконденсаторы, также известные как электрохимические конденсаторы, принцип действия которых основан на формировании двойного электрического слоя на границе между полупроводником и электролитом при условии приложенного внешнего напряжения. Еще в 2006 году была предложена идея создания подобных суперконденсаторов из графена, материала, представляющего собой одноатомные листы углерода, формирующего гексагональную кристаллическую решетку. С тех пор ученые с разных концов планеты предлагают различные конструкции устройств, позволяющие увеличить плотность запасаемой энегии.
    Новая конструкция суперконденсатора, предложенная специалистами из Nanotek Instruments Inc. (США), имеет электроды, состоящие из графена с примесями повышающего проводимость ацетилена и связующего вещества PTFE. В качестве электролита использовалось вещество, известное в электрохимии как EMIMBF4. К слову, именно эта научная группа в 2006 году впервые предположила, что графен в принципе может использоваться для создания подобных устройств. В результате применения указанных веществ ученые создали в защитной камере конденсаторы размерами не больше монеты.
    Энергетическая плотность полученного устройства по порядку сравнима с никель-металлогидридными батареями. Если говорить о цифрах, то плотность энергии в созданном устройстве – порядка 85,6 Вт*час/кг при комнатной температуре и порядка 136 Вт*час/кг при 80 градусах по шкале Цельсия. Однако, как было отмечено выше, устройство имеет громадное преимущество по сравнению с привычными батареями, заключающееся в том, что оно может быть заряжено и разряжено чрезвычайно быстро. Сами разработчики считают свое творение настоящим технологическим прорывом. Возможность быстрого заряда означает, что в будущем подобная конструкция может использоваться для питания мобильных телефонов и другой пользовательской портативной техники.
    В настоящее время группа продолжает работу. Основная цель ученых – дальнейшее повышение плотности запасенной энергии. Их цель – создать устройства, способные хранить как минимум столько энергии, сколько запасают литий-ионные батареи (при том же весе), но для которых возможна перезарядка всего за несколько минут.
    Стоит напомнить, что на момент создания первого электрохимического конденсатора на базе графена была установлена теоретически-доступная плотность заряда в 550 Фарад на грамм веса устройства. И, несмотря на достаточно малую массу одноатомных листов графена, эта плотность до сих пор не была достигнута на практике. В качестве основной причины ученые указывают явление «слипания» отдельных листов графена между собой. Таким образом, в качестве одного из направлений дальнейшей работы ученым представляется поиск способов исключить данный факт. Группа из Nanotek Instruments Inc., в частности, предполагает, что добиться этого можно, используя искривленные листы графена, вместо плоских.

    Производители суперконденсаторов

    В настоящий момент суперконденсаторы у нас в России выпускают:
  • ЗАО "Эсма" (г. Троицк Московской обл.),
  • ЗАО "Элит" (г. Курск),
  • ООО "Технокор" (г. Москва),
  • НПО "Эконд" (г. Москва),
  • АО "Плескава" (г. Псков - по лицензии НПО "ЭКОНД").
  • ОАО "НИИ "Гириконд" (г.С-Петербург)
  • ОАО РКК "Энергия" (г.Королев)
  • ОАО "Энергия" (г.Елец,Липецкая обл. - разработка ЗАО "Элтон") - производство
  • ЗАО НПП "Инкар-М" (г.Королев)
  • ЗАО "Элтон" (Они же "Эсма") (г.Троицк, Московская обл.) - разработка

    Литература:
    Более подробно информацию об устройстве ионисторов (суперконденсаторов) можно прочитать здесь: "КОНДЕНСАТОРЫ С ДВОЙНЫМ ЭЛЕКТРИЧЕСКИМ СЛОЕМ" (в формате PDF)

  •  

     

    -

    Концепция электромобиля

    -

    Маркировка электромашин

    -

    Режим зарядки аккумуляторов

    -

    Сведения по аккумуляторам

    -

    Требования к мини тракторам

    -

    Требования к автомобилям

    -

    Требования к электромобилям

    -

    Обзор производителей аккумуляторов

     

     

     

       Rambler's Top100